1 Express $5 x^{2}+15 x+12$ in the form $a(x+b)^{2}+c$.
Hence state the minimum value of y on the curve $y=5 x^{2}+15 x+12$.

2 You are given that $\mathrm{f}(x)=2 x^{3}-3 x^{2}-23 x+12$.
(i) Show that $x=-3$ is a root of $\mathrm{f}(x)=0$ and hence factorise $\mathrm{f}(x)$ fully.
(ii) Sketch the curve $y=\mathrm{f}(x)$.
(iii) Find the x-coordinates of the points where the line $y=4 x+12$ intersects $y=\mathrm{f}(x)$.
[4]

Fig. 12
Fig. 12 shows the graph of $y=\frac{4}{x^{2}}$.
(i) On the copy of Fig. 12, draw accurately the line $y=2 x+5$ and hence find graphically the three roots of the equation $\frac{4}{x^{2}}=2 x+5$.
(ii) Show that the equation you have solved in part (i) may be written as $2 x^{3}+5 x^{2}-4=0$. Verify that $x=-2$ is a root of this equation and hence find, in exact form, the other two roots.
(iii) By drawing a suitable line on the copy of Fig. 12, find the number of real roots of the equation $x^{3}+2 x^{2}-4=0$.

4 (i) You are given that $\mathrm{f}(x)=(2 x-5)(x-1)(x-4)$.
(A) Sketch the graph of $y=\mathrm{f}(x)$.
(B) Show that $\mathrm{f}(x)=2 x^{3}-15 x^{2}+33 x-20$.
(ii) You are given that $\mathrm{g}(x)=2 x^{3}-15 x^{2}+33 x-40$.
(A) Show that $\mathrm{g}(5)=0$.
(B) Express $\mathrm{g}(x)$ as the product of a linear and quadratic factor.
(C) Hence show that the equation $\mathrm{g}(x)=0$ has only one real root.
(iii) Describe fully the transformation that maps $y=\mathrm{f}(x)$ onto $y=\mathrm{g}(x)$.

